THE OFFSPRING MAGAZINE
A PUBLICATION OF THE MAX PLANCK PHDNET

CHANGE IN ACADEMIA
Greetings to our fellow scholars, dreamers, and change-makers! With great enthusiasm, we present the latest issue of The Offspring Magazine, focusing on a theme that is significant for us all: “Change in Academia.”

In the dynamic world of academia, where ideas take flight and knowledge is born, we, the Doctoral Researchers, stand as torchbearers of improvement. Within these pages, you’ll find narratives that explore the perspectives of students on changes in their academic pursuits. The articles cover topics such as the pressure on publication frequency over quality and the importance of mental health in academia. They highlight the perspectives of those who see change as not only necessary but fundamental to their academic pursuits.

Alongside these narratives, our contributors share personal experiences, from navigating life opportunities to recommending light reading for those moments when the weight of research feels overwhelming. This year, we continue to explore scientific subjects, delving into topics such as black holes and everyday chemicals that could be dangerous to us.

As you dive into the pages of this magazine, we invite you to embrace the winds of change sweeping through the halls of academia. Let this issue serve as a testament to our collective yearning for a better academic experience for future generations.

A heartfelt thank you to our contributors, the dedicated editorial team, PhDnet, and, most importantly, to all of you Doctoral Researchers—the driving force behind the desire for change. Here’s to a future filled with transformative possibilities!

Cemre Coskun on behalf of the Offspring Magazine Team

IMPRINT

Publisher: Max Planck PhDnet (2024)

Coordinator and Editor-in-Chief: Cemre Coskun
Max Planck Institute for Biological Intelligence

Magazine Design and Layout: Mehmet Eray Akbas
Max Planck Institute of Immunobiology and Epigenetics

Front Cover Design: Morgane Peirolo
Max Planck Institute for Psycholinguistics

Magazine Editorial Team: Cemre Coskun, Constanze Reinken, Davy Lin, Huizi Kuang, Jaswanth Subramanyam, Julia van Scherpenberg, Mohammad Alaloo, Marcel Jüngling, Andres Tangarife, Maria-Bianca Leonte, Mehmet Eray Akbas, Melisa Özmen, Peter Schlichter, Xiaoran Liu

Podcast Hosting and Production: Beatrice Lansbergen, Marcel Jüngling, Xiaoran Liu, Andres Tangarife, J aswanth Subramanyam

Contact: offspring.magazine@phdnet.mpg.de

Articles in this magazine can be cited through a Creative Commons Attribution License.
In this Issue

Change in Academia

Publish or Perish 3
Feeling low when rising high 7

Science Communication

Black Holes and Revelations 11
Are these chemicals dangerous? 15
;OL)LSPLM,HLJ[!4HNP]PU:]PLUJL 19

From the DRs

3P]PUNPU-YHU]JOL<2^[aLYSHUKHUKLYTHU` 21
Post-Covid Conversation with a PhD student 25
>OLU:]PLU[PZ[Z-HPS<Z 27
What to Read Next 31

Featured Episodes

Human Evolution, Neanderthal, and +LUPZ[V]HUM[7YVM+YIVOHUULZ2YH\ZL 35
Centenarians, Biological Clocks, and Revers-PUN(NL]PUNM+[Y1YYPZ+LLSLU 35
95(5L[~Y RZPU[OL]Y HPUM[1LYULQ<SL 36
Data Minimization, Privacy, and Responsible *VTW\PUNM+[Y(ZPH)PLNH 36

PhDnet

General Meeting 2023 37
Steering Group Overview 2023 39
PhDnet Work Groups 42

;OL6HZWYPUN4HNNaPUL
The term “publish or perish” describes the pressure for researchers to frequently and numerously produce publications in order to stay afloat in academia. While it is not entirely clear when the term was coined, one of its earliest known uses was by Logan Wilson, an American historian and educator, during the 1940s. Since then, it has become an ubiquitous and well-known term among academics. Author-level metrics have become increasingly important for funding agencies and institutions to evaluate a researcher’s work while the competition for funding and scarce permanent research positions has strongly increased with more and more people striving for an academic career. In an international survey by Dalen and Henkens from 2012, between 52 and 74% of participating researchers agreed that the publication pressure in science is “too high”, especially in the US and other Anglo-Saxon countries.

Perish can mean different things in different stages of a researcher’s career. For new PIs, it can mean not getting tenure; for graduate students, it can mean having to leave academia altogether due to an inability to find a job where they feel secure. A report on young scientists in Germany, which was conducted by the Institute for Innovation and Technology in Berlin in 2021, shows that many researchers in Germany leave academia during their Post-Doc, with only 22% remaining in academia within ten years after finishing.

The strong focus on quantity of publications amplifies the pressure for scientists and often leads to bad working conditions, which can create a feeding ground for mental illnesses. The Max Planck PhDnet survey found that in 2021, the “vast majority of doctoral students work many more hours than they are required to”, with 80% of them taking less than 25 days of holiday, even though they have 30 by contract. 36.2% of these participants stated that they did so because of high workload or pressure from their supervisors. The stressful work environment leads many smart and talented researchers to leave for more secure, comfortable and high-paying jobs in industry and the private sector.

Not only the humans behind science suffer from the increased publishing pressure, but it also has negative impacts on science itself. In an interview with the Guardian in 2013, British physicist Peter Higgs, claimed that he would not have gotten a research position in today’s academic climate because he would not have been considered productive enough. Arguably, Higgs belongs to the most influential scientists of our time. He gave his name to several important findings and theories in physics, including the Higgs boson, which he predicted in 1964 in one of his few published papers. With his research, he contributed one of the most important theories of particle physics. He won a Nobel prize for his achievements in 2013. According to him, he probably would not have been able to “have the peace and quiet” to make this breakthrough under the current pressure to produce scientific papers.

In 2022, a globally open survey by the Wellcome Trust showed that 70% of respondents felt stressed on an average working day. 34% had actively sought professional help for depression or anxiety during their scientific career.
It can incentivize academics to prioritize the quantity of their output over thorough research. Already in 1986, Ingrid Moss found in an interview study at an Australian university that many researchers felt inclined to lower their standards in order to publish more articles in a shorter period of time and were tempted to publish insignificant data. Besides the willingness to sacrifice research quality, the pressure to publish might in some cases even increase the use of unethical practices in science, such as faking results or hiring so-called paper mills to write and publish fake papers under your own name; a practice that will likely skyrocket with recent developments in AI.

With more scientists feeling driven to produce as many articles as possible, the pool of publications is becoming increasingly huge. The pressure to publish might in some cases even increase the use of unethical practices in science, such as faking results or hiring so-called paper mills to write and publish fake papers under your own name; a practice that will likely skyrocket with recent developments in AI. The terms “least publishable unit” and “salami slicing” have become established in regards to academic publications. “Salami slicing” refers to the practice of dividing research into multiple smaller publications to maximize the number of publications, instead of presenting it as a comprehensive study. The term “least publishable unit” refers to the smallest fragment of research or data that is considered sufficient for a standalone scientific article.

There are several metrics created to rank scientists based on the number of their publications and citations. One of the most well-known ones is the so-called “h-index”, which is an increase that is “disproportional to the advancement of human knowledge”. There are several metrics created to rank scientists based on the number of their publications and citations. One of the most well-known ones is the so-called “h-index”, which is defined as the maximum number h that can be found for an author so that at least h papers have been cited at least h times. In addition to the number of publications, the so-called impact factor of journals is often taken into account as well, adding another aspect to the pressure. Distinguished journals especially early career scientists are struggling with their mental health, presumably because they are most affected by the publication pressure.

Researchers’ views on metrics

<table>
<thead>
<tr>
<th>Statement</th>
<th>Disagree</th>
<th>Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>I think current metrics have had a positive impact on research culture</td>
<td>58%</td>
<td>14%</td>
</tr>
<tr>
<td>My institution/workplace places more value on meeting metrics, than it does on research quality</td>
<td>33%</td>
<td>43%</td>
</tr>
<tr>
<td>I feel pressured to meet Key Performance Indicators/metrics, e.g. REF, grant funding</td>
<td>22%</td>
<td>54%</td>
</tr>
</tbody>
</table>

Survey, n = 3917-4175 – research community, UK and international, excluding unemployed and retired.

Wellcome Trust Survey, 2020 [1]
like Nature will commonly have high rejection rates. Nature itself states that only about 8% of the submitted manuscripts are being published. Many researchers might be more willing to adjust their articles to align with the scope of these 'high-impact' journals and focus on topics that offer a greater chance of being selected, rather than pursuing subjects they are passionate about or those they know will advance science.

Due to these effects, "publish or perish" also contributes to the so-called "reproducibility crisis". Reproducibility is a fundamental principle of the scientific method. It should be possible to replicate the published results of other scientists, but in recent decades studies have increasingly struggled to be reproduced successfully. One reason for this might be flawed methods due to rushed execution in order to be able to publish quickly. Ideally, science should "self-correct" with new studies finding possible flaws in older ones, but the focus on novelty of many journals and the importance of publishing in them in order to climb up the scientific career ladder often makes it infeasible for scientists to spend their time replicating previous studies.

Of course, publications are an important outlet for researchers to share their science with other scientists making it possible to build on previous work. But with increasing negative side effects, we need to ask the question whether the focus we put on them is really beneficial. Is the number of publications really the right way to judge a researcher's success and can the quality of research even be measured with such quantifiable metrics?

The subject of "publish or perish" is already being discussed a lot, both in science and in the general media, and several studies have been conducted that highlight the negative change in the academic landscape. One solution would be for institutions and funding agencies to make a conscious effort to deprioritize the quantity of publications in their selection processes. In a Nature article from 2016, Mark W.J. Ferguson explains that during his time as dean of biological sciences at the University of Manchester, he made it feasible for scientists to spend their time on important publications in their field. He argues that a certain degree of competition is important to motivate researchers and that the evaluation based on publication metrics helps to reward scientists based on merit.

But how can there be long-lasting change in the academic landscape? One solution would be for institutions and funding agencies to make a conscious effort to deprioritize the quantity of publications in their selection processes. In a Nature article from 2016, Mark W.J. Ferguson explains that during his time as dean of biological sciences at the University of Manchester, he made it feasible for scientists to spend their time on important publications in their field. He argues that a certain degree of competition is important to motivate researchers and that the evaluation based on publication metrics helps to reward scientists based on merit.

But how can there be long-lasting change in the academic landscape? One solution would be for institutions and funding agencies to make a conscious effort to deprioritize the quantity of publications in their selection processes. In a Nature article from 2016, Mark W.J. Ferguson explains that during his time as dean of biological sciences at the University of Manchester, he made it feasible for scientists to spend their time on important publications in their field. He argues that a certain degree of competition is important to motiva...
and the rest of the committee decided to ask applicants for promotions or appointments to submit three publications that they considered to be their most important, instead of focusing on the conventional assessment measures. This selection tells a lot about the applicant, and it also increases chances of the committee members to actually read these papers instead of barely skimming through a lengthy list of articles.

In 2012 a group of editors and publishers crafted the "San Francisco Declaration on Research Assessment" (DORA), which encompasses several recommendations to all parties in the research and publishing process to improve the quality of research. This includes considering other research outputs (like datasets and software) besides papers when evaluating candidates for funding.

Furthermore, the increased emergence of subject-specific preprint servers, like bioRxiv, allows many researchers to share their science with the community without having to go through the highly competitive process of submitting an article to a high-impact journal. These servers come with new issues regarding quality control, but they could still contribute towards reducing the pressure on the publishing industry.

Whether we will see actual change in academic working conditions soon is unclear, but looking at the public conversation and the Wellcome Trust's report on what researchers think about the culture they work in, it becomes clear that there is at least an increased awareness about the negative side effects of the "publish or perish" phenomenon.
Feeling low when rising high
The Impostor Syndrome in academia

By Juliane van Scherpenberg

In the turbulent and eventful last few years, the heightened focus on mental well-being in academia, one that has lately received a lot of attention, be exceptionally intelligent, skilled and do well in their career at whatever stage, be it in school or university. In comparison to others they are being told - explicitly or implicitly - that they simply are not as smart. On the one hand they feel the constant need to prove to themselves and their families or society that in fact they are as skilled as others in their respective careers. On the other hand, a part of them believes what they are being told. Even when they achieve exceptional grades and recognition, their surroundings do not acknowledge them as such. They continue striving for validation of their intellectual competence while secretly starting to doubt if they have achieved their acclaim not because of their skills, but by "tricking" teachers or professors. Hence, they start feeling like impostors.

It is conceivable that people belonging to minorities may have this experience. They grow in a society in which the career they are choosing is historically dominated by the other gender or a different ethnic group for example. This leads them to internalize the belief that they lack the predisposition to perform as well as the majority. According to a 2017 study by Bernard et al. with African American college students, levels of feeling like an impostor are further enhanced if the subjects experienced racial discrimination.

Another possibility is an environment in which individuals are attributed exceptional intelligence from the start, being told that they can do anything with ease. However, once confronted with reality, they can experience situations in which they do actually struggle. They begin to distrust what society told them and even worse, begin to distrust themselves. Even though they perform exceptionally well, they do have to work for their achievements, contradicting the idea that being intelligent means being able to do everything with ease. In reverse they start to believe that in fact they are not "a genius" or specially talented, feeling like impostors in their professional surroundings.

In the turbulent and eventful last few years, the heightened focus on mental well-being in academia, one that has lately received a lot of attention, be exceptionally intelligent, skilled and do well in school or university. In comparison to others they are being told - explicitly or implicitly - that they simply are not as smart. On the one hand they feel the constant need to prove to themselves and their families or society that in fact they are as skilled as others in their respective careers. On the other hand, a part of them believes what they are being told. Even when they achieve exceptional grades and recognition, their surroundings do not acknowledge them as such. They continue striving for validation of their intellectual competence while secretly starting to doubt if they have achieved their acclaim not because of their skills, but by "tricking" teachers or professors. Hence, they start feeling like impostors.

It is conceivable that people belonging to minorities may have this experience. They grow in a society in which the career they are choosing is historically dominated by the other gender or a different ethnic group for example. This leads them to internalize the belief that they lack the predisposition to perform as well as the majority. According to a 2017 study by Bernard et al. with African American college students, levels of feeling like an impostor are further enhanced if the subjects experienced racial discrimination.

Another possibility is an environment in which individuals are attributed exceptional intelligence from the start, being told that they can do anything with ease. However, once confronted with reality, they can experience situations in which they do actually struggle. They begin to distrust what society told them and even worse, begin to distrust themselves. Even though they perform exceptionally well, they do have to work for their achievements, contradicting the idea that being intelligent means being able to do everything with ease. In reverse they start to believe that in fact they are not "a genius" or specially talented, feeling like impostors in their professional surroundings.

What is the impostor syndrome?

It was first described in a paper by Clance and Imes in 1978 titled “The impostor phenomenon in high achieving women: dynamics and therapeutic intervention”. The authors were astonished when they were confronted with many successful women at various stages of their academic careers who had an internalized feeling of “intellectual phoniness”, being convinced that they had achieved their success not because of their abilities but due to serendipitous external factors like luck, errors in judgment of committees or professors or administrative mistakes in the admittance process. There have since been more studies showing that the impostor phenomenon is not limited to women and is also prevalent among men, all age groups and in ethnic minorities. However, there is no clear evidence for the causes and no commonly agreed on diagnosis or treatment.

The two circumstances in which the impostor phenomenon originates that Clance and Imes identified in their study still seem plausible today when they are generalized to some extent. People experiencing imposter syndrome might have come up in a personal or societal environment in which they are not expected to...
This second scenario explains why also members of non-marginalized groups suffer from impostor syndrome. It also matches the general conception of the impostor syndrome being more prevalent amongst women compared to men when considering the fact that - as shown for example in a 2020 study by OhZ[Y\l[HSBDNLULYHSS`\VTLUPU[LYWYL] their failures as their own lack of skills while TLUVM[LUH]YP]\LP]\VHKS]\R\OLV]OLY hand men also attribute positive feedback more to their own abilities whereas women rather H[Y\LP]\VS]\R;OPZPZMY]OLYZWWWVY[LKI a study on Austrian doctoral researchers that UV[VUS\Z]\NMLKOH[MLTHSL+ZZ\HLYTVYL from impostor syndrome than men, but also that they had higher fear of success, fear of MHPS]\YLHUKSV\LYZSM\LLL\OHUTLUBD

It is important to understand that the impostor syndrome goes beyond the common sensation of feeling intimidated - especially in academia - by others around you who have a deeper RUV`SLKLN\HTVYLL_WLYPLU]\LPU`\YYFLSK In fact it is that exact feeling combined with the conviction that you will never be able to catch W]\O`\V\VELYLYZAVHYYLVUHZ\THY[HZ your colleagues and you do not belong there since you only got to your current position by TPZ[HLRVYI]YP]RPUVV[OLYZ

Impostor Syndrome in Academia

The impostor phenomenon can appear everywhere in society and in all professions but it is clear that academia fosters an environment \`OLYLPJHU\Y\YZOLHZPS` The entry requirements and career advancement process within academia contribute to the underrepresentation of FY[Z|NLVH[PVVH]HKLTPZPUKP]\PKH\SZ`\OL same time there exists an immense pressure VMOH[PUNVULZLYLHJOHUKZ]PLU[P]H\J]\OL]\TLYV\N\Pa\LK\HUK]\HSPKHLK]. the situation it is not surprising that impostor Z\UKYTVLOHZILVTLH\QQY[HSPUNWVPU among academics while discussing working J\VUKP[PVUZHUKT]\K\HSOLH[S]

And that's a good thing! Impostor syndrome OHZHS`H`ZL\PZ[LOU[OLIVVR]\OL:` is for Everyone", a collection of essays by female astronomers, Jocielyn Bell writes when describing her acceptance to do a PhD in radio astronomy at Cambridge in 1965 "Clearly Cambridge had made a mistake admitting me; they would discover their mistake and [OYV\TL]\\NP\SL\Y\ZOL`HZL_WLYPLU]PUN impostor syndrome - more than 10 years before the original paper describing the phenomenon

The Offspring was published. And she can’t have been the only one - especially the only woman in a male-dominated field with this experience at that time. Today we not only have a name for it, we talk about it regularly. Understanding the prevalence of the problem, performing scientific studies on it and discussing it in society means we can learn how to fight it.

What needs to change?

We need to improve the recognition of the achievements of members of marginalized groups. Especially if they are being assured as early as possible in their life or academic career that they are doing well they might be less prone to doubting the recognition they receive later on. In addition, giving more visibility to these people will reduce the feeling of “not belonging” among young people from the same societal group from the beginning.

Academia needs to become more diverse and needs to show it to society!

On the other hand we need to show the equation of “being smart” and “doing everything with ease” needs to be disestablished. Having to work hard for achievements, making mistakes and experiencing failures and setbacks does not reflect on the intelligence of a person. We need to get rid of the image of successful scientists being “born geniuses” - none of them got to where they are effortlessly.

If you are experiencing the impostor phenomenon here are a few tips on how to handle it.

Fight it with logic:

If everyone around you is smarter than you, they should have already figured out that you are not smart enough and don’t belong in your group. Therefore, they would have found you out already and thrown you out. You are still here, so you are not an impostor.

Prove the opposite to yourself:

So you’re not smart, huh? Take the time to read a difficult paper, or pick a topic you have until now only partly understood and take the time to really grasp it. Write a summary, prepare a presentation (even if just for yourself) or explain it to someone else. You’ll be surprised to see how much you can learn in a short amount of time when you put your mind to it.

Improve your self-awareness:

Write down your achievements as negligible. Academia needs to become more diverse and needs to show it to society!

On the other hand we need to show that the struggle, in fact, is real!
Side note: “Syndrome” vs “Phenomenon”

In the medical or clinical sense, a syndrome is a distinguishable set of symptoms and physical observation that suggests a particular disorder for which the direct cause is not always clear.

In the psychological sense, a syndrome is an assembly of symptoms and signs commonly arising from a single or several connected causes, together suggesting a distinct physical or mental disorder.

The impostor syndrome does not belong to either of those descriptions. Therefore, calling it a syndrome is technically not correct and misleading. The more appropriate way is to describe it as a “phenomenon” or “experience”.

In spite of this, I have chosen to use the terms “syndrome” and “phenomenon” synonymously in this text as these are the most commonly used expressions.

References

Image Source: https://asana.com/resources/impostor-syndrome

Kick imposter syndrome to the curb by:

- Focusing on facts
- Learning from team members
- Fighting feelings with evidence
- Acknowledging and releasing feelings
- Reframing negative thoughts
- Anticipating the feelings
- Sharing it with someone
- Finding a mentor
- Celebrating a win (toot your horn)
W

ever I meet new people and mention that I am an astrophysicist, most of the time I am immediately
bombarded with questions about the universe. You can bet that one of the first questions is going to be about black holes. "What happens if you fall into a black hole?" "Will the Earth be swallowed by a black hole and when?" "What is inside a black hole?"

It is interesting that even those who have no real knowledge of astronomy, somehow have at least a vague idea of what a black hole is. They are indeed impressive objects and I can understand why they evoke a sense of wonder, curiosity, and perhaps even fear in people. Also for us astrophysicists, black holes are extremely interesting and fascinating objects. They are great laboratories to test our current theories because they offer the most extreme environments in the Universe - far beyond anything we could ever dream to recreate here on Earth.

To understand the true nature of black holes, it helps to have a clearer understanding of gravity. Gravity was first described by Isaac Newton in the 17th century as an attractive force between objects that have a mass. The heavier an object, the stronger its gravitational pull which decreases with distance from the object. And for most applications in our daily life this description of gravity is enough.

In 1915, however, Albert Einstein changed the game when he came up with his theory of General Relativity. In this theory, gravity naturally arises as a geometrical property of spacetime in its interaction with matter. Massive objects distort the space and time around them and with this, alter the path of all entities traveling through space and time in their vicinity.

Depending on their velocity and proximity to the heavier object, these entities may be forced to spiral into the heavier object, end up in a stable orbit around it, or if they are fast enough, pass by the object but be diverted from their original trajectory. Once trapped within the gravitational potential, no information can come out of the black hole, is it possible for anything to escape its pull which decreases with distance from it.

Black Holes are a theoretical prediction in general relativity when the underlying conditions - the Einstein field equations - are applied to the specific case of a static massive sphere. They are objects so massive and compact that spacetime is distorted so strongly, not even the speed of light suffices to escape their gravitational pull, once you reach a certain proximity. This border, from beyond which no information can come out of the black hole, is called the Event Horizon. It is impossible for us to know exactly what is happening inside a black hole, especially at its very center - the point of infinite density - our understanding of physics breaks down. It is the subject of active research in theoretical physics to correctly describe the physical conditions at this point in space and time.

It is important to understand that black holes in the end are no more than massive objects that interact with spacetime like any other mass. They are just so extreme that the effects of general relativity, which play a less important role for lighter objects, become extremely relevant in their immediate surroundings. From large distances, however, they are simply massive bodies in space, creating gravitational potentials around them.
alter their trajectories. They are not—contrary to what is often believed among lay people—a gigantic cosmic vacuum cleaners flying through space and actively sucking up their surroundings. In fact, if we were to replace our Sun with a black hole of exactly the same mass, nothing would change in the way the Earth and all the other planets orbit around it. It would get very dark and very cold, but not because the Earth would suddenly fall into the black hole at the center of our solar system. Neither the fate of the Earth nor the Sun nor even the other stars in our Galaxy is to fall into a black hole.

Black Holes were only predicted in theory for decades before there was the first observational evidence of their existence. Einstein himself never believed in their existence, even though black holes are a natural consequence of his theory. But numerous theoretical physicists, including Karl Schwarzschild, Arthur Eddington, Roy Kerr, Roger Penrose and Stephen Hawking, to name but a few, spent decades studying their nature within the framework of general relativity. However, black holes have proved to be difficult to observe, as they can only be identified by studying their effects on their surroundings. The first object to be identified as a black hole was Cygnus X-1 in the 1970s. Since then, technological advances in astronomy facilitated more and more observations of black holes. We now know that numerous black holes of various masses exist.

We distinguish between stellar mass black holes and supermassive black holes. Stellar mass black holes are the end product of the violent death of very massive stars and have, as their name suggests, a mass similar to the mass of stars ranging from a few to hundreds of times the mass of our Sun. Estimates suggest that there should be 100 million of such black holes in our Galaxy, of which we have observed about 50. Supermassive black holes are located at the center of almost every large galaxy. They weigh a thousand to a billion times more than stellar mass black holes. The way these colossal objects are formed is not yet completely understood.
The last 10 years have presented some major breakthroughs in the study of black holes:

» In 2015, the LIGO and VIRGO collaborations detected small ripples in the fabric of spacetime, so called gravitational waves, caused by the merger of two black holes. Previously, the only way to study black holes was via detecting light emitted in their immediate surroundings. The detection of gravitational waves opened an entirely new window to study black holes and the universe in general. This achievement was awarded with the Nobel Prize in Physics in 2017.

» In 2018, two independent groups using the Very Large Telescope in Chile and the Keck Telescopes in Hawaii could resolve the orbits of stars extremely close to the center of the Milky Way so precisely, that they were able not only to prove the existence of a black hole at the center of our Galaxy, but also to measure its mass with unprecedented precision. These efforts led Reinhard Genzel and Andrea Ghez, the leaders of these two groups, to win the Nobel Prize in Physics in 2020.

» In 2019, the Event Horizon Telescope Collaboration managed in a huge effort of combining numerous telescopes around the globe to take an image of the black hole in the galaxy M87. Never before had it been possible to achieve the angular resolution needed to resolve the immediate surroundings of the black hole, being able to directly detect the effect of the Event Horizon of a black hole.

N. Fischer, H. Pfeiffer, A. Buonanno (Max Planck Institute for Gravitational Physics), Simulating eXtreme Spacetimes (SXS) Collaboration.
I was lucky enough to interview astrophysicists who contributed to these incredible results for black holes, check out my episodes with Laura Sberna and Frank Ohme, both from the MPI for Gravitational Physics and members of the LIGO Collaboration, with Gunther Witzel from the MPI for Radio Astronomy and member of the Event Horizon Telescope Collaboration and with Reinhard Genzel from the MPI for Extraterrestrial Physics and Nobel Laureate of 2020.

List of episodes with links:

#4-03 - Black Holes, Spacetime and Relativity - ft. Dr. Laura Sberna

#4-04 - Gravitational Waves from Black Holes - ft. Dr. Frank Ohme

#4-10 - Taking Images of Black Holes - ft. Dr. Gunther Witzel

#4-11 - The Nobel Prize Winning Black Hole - ft. Prof. Dr. Reinhard Genzel
Throughout the pinnacle of scientific research there are many questions that are simply too difficult to answer conclusively, and yet in order to continue to reap the benefits of these scientific ventures we need to try our best. The interplay between chemicals and biological systems is one field in particular that is affected by this fact. Despite the common perception of chemicals being synthetic and negative, the term chemicals simply refers to a form of matter with a constant chemical composition, both natural and synthetic. We constantly interact with all types of chemicals with the potential of both important positive as well as negative effects on us. However, over the past 100 years we have become increasingly exposed to new chemicals in doses that are higher to what we can evolutionarily deduce are ‘safe.’ This means we must now figure out the safety of these chemicals without hundreds of generations of trial and error.

In 2015, in not too unusual fashion, the EFSA (European Food Safety Authority) lowered its safe limit of BPA (Bisphenol-A - a plasticiser) by 20,000 times to that of what it was before [1]. While the limit was still above the average daily environmental exposure of the chemical, many companies have pushed to remove this plasticiser from their products. As of 2023, more thorough ongoing investigations now state that an average and high exposure to BPA is of harm to humans of all ages [2]. BPA is still permitted in most food packaging options today.

This story is a reminder of the way in which the chemical toxicity space is ever evolving, and can take time to adjust. Fragrance companies are continually developing new fragrance compounds due to the increasing health concerns related to older (more researched) fragrance molecules. While we would like to think of safety as something clear and finite, our standards across many fields have changed dramatically. Mostly due to an increased understanding of complex biological systems.

Ever evolving research techniques allow us to investigate new relationships between chemicals and biological systems which have intriguing questions regarding their safety. Many of these investigations are required to be able to determine whether these chemicals are safe.

Sweeteners: In 2020, a paper published in Cell Metabolism decided to investigate whether sweeteners would disrupt the body’s ability to regulate sugar uptake in the body, one of the most important health functions. Sweeteners deliver up to 1,000 times the sweetness in comparison to table sugar (sucrose) and all of this without the calories. The scientists speculated that our brains may have made an evolutionary useful connection between sweet and calories. Therefore, the perception of sweetness without the caloric intake may confuse the brain-body regulatory response. Interestingly, they showed that sweeteners without calories didn’t negatively affect insulin resistance. But when sweeteners were combined with non-sweet caloric foods a significant negative response was observed [3]. The spike in insulin resistance was so strong for the adolescent group they had to stop the study early for ethical reasons. This highlights a quite unusual case where research is put on hold for safety concerns while the interactions they are studying is still common practice in society.

While this can only be seen as preliminary evidence, the study highlights a serious concern for an industry that has risen to 18 billion dollars a year and is still growing.

Are these chemicals dangerous?

By Peter Schlichter
More recently, groups have found possible links between erythritol, a naturally occurring sweetener, and major adverse cardiovascular events [4]. Transparent, and intense investigation should follow to allow us to make more informed decisions on our health.

Cosmetics: This 260 billion dollar industry has a noticeable advantage over pharmaceuticals in terms of safety testing since only interaction with the skin surface (in many cases) requires safety tests account for a large portion of the costs related to the cost of drugs and so would substantially increase the cost of your latest beauty cleanser. This difference in regulation is mainly determined since the molecules are not intended to have an effect inside the body. Problem is, intentions rarely have anything to do exactly with the skin have been discovered to do exactly [5].

*VZTL[P]ZI;OPZIPSSPPVUKVSSHYPUK/Z]Y ÔHZ a noticeable advantage over pharmaceuticals in terms of safety testing since only interaction with the skin surface (in many cases) requires [LYT][PUN;OPZPZH]LYPTWVY[HUMLH][VLYZP]U safety tests account for a large portion of the costs related to the cost of drugs and so would substantially increase the cost of your SH[LZ(ILH][']SLHUZLY

;OPZKPHLYLUJLPYULN\SH[PVUPZTHUS\ determined since the molecules are not PU[LUKL[VOH]LUHLHL][PUZPKL[OLIVK` Problem is, intentions rarely have anything [VZH`HV\[V]<VTLLJLU\SWHYHLIZ HUKWVS`AYVPUH[LK]VTWV\UKZ`OPJ]OHYL increasingly being regulated due to toxicity), both found in cosmetics, previously not thought of to cross into the body through the skin have been discovered to do exactly [OH],YHUZKLYTHSZVYYW[PVUZPRUHIZZYW[PVUZP]U]

This in itself doesn’t mean that these molecules are problematic, they may not be negative at all in the concentrations they are in, we simply haven’t probed these questions enough. I believe that we can expect this space to be highly dynamic in the future.

Agrochemicals: There’s much debate on the effects of agrochemicals on human health, like glyphosate, which recently closed several high profiled legal cases. However, in this case I want to focus on the potential impact towards the soil. Weird right? Who cares about the soil?

Soil is a vital ecosystem that ensures a sustainable growth of plant life, that ultimately Z[HZPUZL]LY[OPUNLSZL][P[OZPNUP]H[OL6HZWYPUN4HNHaPUL
The understanding of any of these chemicals, nor should they be. As the great Carl Sagan once said: "extraordinary claims require extraordinary evidence." However, as Avil Loe says in addition "extraordinary evidence requires extraordinary funding." A disruption in the way we see the safety of these ubiquitous chemicals would be a hugely impactful scientific discovery and we must do our utmost to discover the truth.

Chemical molecules have transformed the world we live in and we can expect it to continue to do so in the future. However, our perception and understanding of these chemicals may also change, as they have in the past. The questioning and challenging of the status quo is fundamental to good scientific research, and is essential to continually benefiting from scientific exploration. While preliminary scientific reports give us little to go by in changing the way we live our lives, they are the spark that initiates new research into new unknowns.

Research has shown that earthworms [7] can be highly susceptible to insecticides in quantities that are currently applied, and data stretching back to the 1990s shows potentially OHYTM[SLHL][ZVMHNYV]OLTP[HSZVUTPJYV IH][LY PHB D=LOH][YLUKHISSPKUL’L’ to the importance of these organisms in the distribution and uptake of water and minerals, but as our soils continue to be depleted of nutrients it seems clear that we need to change the way we perform toxicology Z|YLLUZVUHNYVJOLTP|HSZ

Chemical molecules have transformed the world we live in and we can expect it to UVYZO\$K[OL’IL[ZOLNYLH*HYSHN|U VUJLZHPK]L_]YHVYKPUHY ‘SHPTZY LX\PYL Loe says in addition “extraordinary evidence [OLZLWYHJ]P]LZHLYL^Z]ZHPUHISL*YYLU[SYLX]PYLYZL_[YHVYKPUHY ‘MUKPUN|KPPY[W\PVU| the way we see the safety of these ubiquitous chemicals would be a hugely impactful Z]PLU[P]KZ]V]LY’HUK’LTVZ[KVVY \TVZ[VKZ]V]LY[OL[Y][O

interest, throughout the 20th century, aiming to increase food production, we may have overlooked the importance of maintaining a OLHS|O’ZVPS:VPSOLHS|OI’IHZP]HSS|HSSTL[YPZ]YHVYKPUHY ‘L]PKLU[LπV‘L]LYHZ[PS is tanking and multiple predictions show that [OLZLWYHJ]P]LZHLYL^Z]ZHPUHISL*YYLU[SYLX]PYLYZL_[YHVYKPUHY ‘MUKPUN|KPPY[W\PVU| the way we see the safety of these ubiquitous chemicals would be a hugely impactful Z]PLU[P]KZ]V]LY’HUK’LTVZ[KVVY \TVZ[VKZ]V]LY[OL[Y][O

Figure 2: Major nutrient depletion found in farming soil in comparison to naturally maintained soil.
References

[3] Short-Term Consumption of Sucralose with, but Not without, Carbohydrate Impairs Neural and Metabolic Sensitivity to Sugar in Humans, D. Small et al., 2020, 31(3), 493-502

[5] Transdermal absorption of 13C4-perfluorooctanoic acid (13C4-PFOA) from a sunscreen in a male volunteer - What could be the contribution of cosmetics to the internal exposure of perfluoroalkyl substances (PFAS)? Abraham K, Monien BH, Environ Int. 2022, 169

The Belief Effect: Magic in Science

By Peter Schlichter

The Offspring Magazine

In recent years, we have become obsessed with the placebo effect. A placebo group is commonly part of a control in a clinical drug trial. It often involves the delivery of a "sugar pill", given so that the patient is unaware of whether they are receiving something of pharmacological activity or not. The need to include this group indicates a rather remarkable fact. Scientists have accepted that, in some cases, the belief that you are getting a treatment is enough to treat your illness, even in the case of cancers [2]. Thinking your way into better health may sound like the words of pseudoscience, but here we are in the heart of science and we can say without doubt that this is a real effect.

Beyond the laboratory, studies have shown that drugs become less effective the longer they appear on the market. Not because of a protective pathogenic adaptation, like antibiotic resistance but because it is thought that drugs are most effective when they are new because they activate the same placebo-esque response. Customers think the new "stuff" must be better than the old "stuff".

The placebo effect is a subcategory of belief effects often observed in a control setting. Little is understood about how this effect operates, adding to its mystery. Nowadays, researchers are increasing their efforts to understand the fundamentals of the belief effect and continue to make new mind-blowing observations.

Recently, a study investigated the way we respond to consuming two calorically different milkshakes, or so the participants believed. One group was told that their milkshake was high fat with up to 620 kcal, while the other group got a low fat alternative. Unsurprisingly, the participants that drank the high fat milkshake perceived a greater feeling of fullness than those that drank the low fat milkshake. As you can probably guess by now, this was not a nutritional effect, it was in fact the belief effect. Both groups' milkshakes were nutritionally identical - they were the same milkshake! What is even more fascinating is that we are in the heart of science and we can understand these self-healing systems with pharmacological agents, we still know little about how and why these pathways more regularly come from the well-recognized placebo effect.

Despite its popularity I am not convinced that many have taken the time to appreciate the placebo effect. A placebo group is commonly part of a control in a clinical drug trial. It often involves the delivery of a "sugar pill", given so that the patient is unaware of whether they are receiving something of pharmacological activity or not. The need to include this group indicates a rather remarkable fact. Scientists have accepted that, in some cases, the belief that you are getting a treatment is enough to treat your illness, even in the case of cancers [2]. Thinking your way into better health may sound like the words of pseudoscience, but here we are in the heart of science and we can say without doubt that this is a real effect.

Beyond the laboratory, studies have shown that drugs become less effective the longer they appear on the market. Not because of a protective pathogenic adaptation, like antibiotic resistance but because it is thought that drugs are most effective when they are new because they activate the same placebo-esque response. Customers think the new "stuff" must be better than the old "stuff".

The placebo effect is a subcategory of belief effects often observed in a control setting. Little is understood about how this effect operates, adding to its mystery. Nowadays, researchers are increasing their efforts to understand the fundamentals of the belief effect and continue to make new mind-blowing observations.

Recently, a study investigated the way we respond to consuming two calorically different milkshakes, or so the participants believed. One group was told that their milkshake was high fat with up to 620 kcal, while the other group got a low fat alternative. Unsurprisingly, the participants that drank the high fat milkshake perceived a greater feeling of fullness than those that drank the low fat milkshake. As you can probably guess by now, this was not a nutritional effect, it was in fact the belief effect. Both groups' milkshakes were nutritionally identical - they were the same milkshake! What is even more fascinating is that we are in the heart of science and we can say without doubt that this is a real effect.

Beyond the laboratory, studies have shown that drugs become less effective the longer they appear on the market. Not because of a protective pathogenic adaptation, like antibiotic resistance but because it is thought that drugs are most effective when they are new because they activate the same placebo-esque response. Customers think the new "stuff" must be better than the old "stuff".

The placebo effect is a subcategory of belief effects often observed in a control setting. Little is understood about how this effect operates, adding to its mystery. Nowadays, researchers are increasing their efforts to understand the fundamentals of the belief effect and continue to make new mind-blowing observations.

Recently, a study investigated the way we respond to consuming two calorically different milkshakes, or so the participants believed. One group was told that their milkshake was high fat with up to 620 kcal, while the other group got a low fat alternative. Unsurprisingly, the participants that drank the high fat milkshake perceived a greater feeling of fullness than those that drank the low fat milkshake. As you can probably guess by now, this was not a nutritional effect, it was in fact the belief effect. Both groups' milkshakes were nutritionally identical - they were the same milkshake! What is even more fascinating is that we are in the heart of science and we can say without doubt that this is a real effect.
The Offspring Magazine

that it was not just a self-perceived feeling of satiety that correlated with the belief. The biochemical signals in the body responded accordingly. Ghrelin is a hormone released in the gut when the body is hungry and drops in concentration after a meal - often referred to as the hunger hormone. After the ingestion of the nutritionally identical milkshake, ghrelin levels in participants that thought they were receiving that glutinous, high fat shake dropped more keeping them fuller for longer in comparison to those that thought they were getting the diet shake [3].

The way we think about our food is not the only thing that has been shown to be affected by our beliefs. Participants that were told they slept badly had a drop in their performance while workers who were told that stress provides an adaptively positive response (what doesn’t kill you makes you stronger) showed a marked improvement in job performance and health [4]. Moreover, hotel workers that were told that their average workload accounted for much more physical activity than previously believed, did not only feel better and lose weight but, once again, had improved biomarkers as if the participants had actively started exercising more - though they had not. The hidden ability of the body to improve ourselves can be, in part, unlocked by belief.

Scientific research has discovered an observable, reproducible and even dose dependent phenomenon that may be behind some of the most pseudoscientific practices that we know of today. Homoeopathy, the practice of diluting a drug to the point of nonexistence, and the use of some traditional medicines, like pangolin scales - which is made of keratin, the same substance as your fingernails - hold no scientific plausibility. However, they may be inadvertently acting increasing your likelihood of being healed - if you believed in it.

Today’s science has the ability to build on this concept. By combining pharmacological knowledge with the belief effect we have the possibility to combine drugs with self healing properties to activate biological pathways with precision and leaps in efficacy beyond what we ever thought was possible. We can achieve something truly magical.

References

During my life I had the chance to live in Paris in France and then moved to Montpellier, Australia for four months for an internship and afterwards moved to Stevenage, the south of the country to study. I then moved to Australia for four months for an intern in the pharmaceutical industry. After being back in Montpellier for the last semester of my studies, I lived in Basel Switzerland for nine months for my Master Thesis and finally ended up in Mülheim, Germany where I have been living for almost two years at the time the article is written. Through these experiences I could compare the way the different countries were functioning, in terms of mentality but also on the more practical side. The order of the places I have been to has of course also influenced my perception and I also evolved along the way, gaining more life experience. In this article, I want to compare the UK, Germany, France and Switzerland on a couple of aspects of my daily life.

Food quality is a rather big point of difference between those countries. In France and Switzerland, people place a high value on food quality and food taste. High quality food is accessible and affordable, which is probably related to these countries being culturally known for their haute-cuisine and diverse local specialties. On the other hand, after discussing with British and German colleagues, I had the impression that food quality was not a major priority in their countries. I have however positively noted the availability, diversity and accessibility of good vegetarian and vegan options in most local supermarkets in Germany. This is not something similarly well established in the other cited countries.

Craft beer is a developing trend in many countries in the world. In Germany, the laws for the purity of the beer, and the attachment to the traditional German beer are two main factors restricting the brew of more innovative and tasty beers significantly, resulting in a poor overall offer, in my opinion. German beers can be described as “thirst-quenchers”, although the craft beer scene is quite common to cross the border to shop at. France, Germany and France from Basel makes it quite common to cross the border to shop at. France, Germany and the UK were overall equivalent: housing was similar, food was more expensive and of better quality in France while electricity was more expensive in Germany. Tobacco and alcohol in general are more taxed in France, hence more expensive than in Germany.

As a EU and French citizen, the administrative work to get into a new country was quite easy, although it was different between the various countries. Upon arrival in Germany, I just had to go to the foreign office with the right documents and I received the confirmation of registration on the same day. I did not need to apply for a residence permit and all this procedure was for free. This and the signature of the contract would give me everything I needed to get paid and start to pay taxes. In the UK (I got there just before Brexit), I had to get an appointment to get a National Insurance Number, which is critical to get work. I had to get an appointment to get a National Insurance Number, which is critical to get work. The cost of living was highest in Basel, almost twice as much as in all the other places. This is due to the high living costs in general in Switzerland, but it is also largely compensated by much higher salaries. The proximity of Germany and France from Basel makes it quite common to cross the border to shop at. France, Germany and the UK were overall equivalent: housing was similar, food was more expensive and of better quality in France while electricity was more expensive in Germany. Tobacco and alcohol in general are more taxed in France, hence more expensive in Germany. Craft beer is a developing trend in many countries in the world. I got there just before Brexit, I had to get an appointment to get a National Insurance Number, which is critical to get work. I had to get an appointment to get a National Insurance Number, which is critical to get work.
probably changed. In Switzerland, I had to register to get paid and apply for a residence permit which in my case would double as a working permit. The application costed CHF 25, and once it was approved, I had to pay an extra CHF 75. I had to repeat this every time I extended my work contract. Fortunately, those costs were reimbursed by my company.

Germans like to complain about the unreliability of their train system as well as the French and British like to do with theirs. I perceived Germany, France and the UK similarly with frequent delays of five to thirty minutes and cancellations in the case of Germany. According to some statistical studies made in France [1], trains in Germany seem more punctual than in France which are both much more punctual than the UK, although the study does not compare how bad the delays are. Switzerland was on another level: in 9 months of traveling and commuting 5 days a week to work, I experienced only 10 delays, most of them being minor delays of less than 20 minutes. This says it all. It is the only country where I and other people are comfortable with having three minutes to change trains at a station, or one minute from train to bus. All trains and buses are coordinated with each other in a way to keep waiting times below 20 minutes for a connecting train. If the previous train is delayed, buses wait for the train's passengers to board before leaving. The shift from that to Germany and especially North Rhine-Westphalia was a big shock for me.
Despite those delays, lots of remote areas can be accessed in all these countries by train and bus and having a car is not necessary to access lots of nice places for hiking for L_HTWLS

Price-wise, Germany is by far the cheapest, helped quite a lot by their recently-implemented 49 € monthly-ticket for the YLNPVUSSH[Y]HPUZPU[OL]*OVSL][V][U][Y]*LMVYL that, it was quite equivalent to France, JOLHWLY[OHUPU][OL]<2HU:~P\aLYSHUK

For long distance travel, the least convenient country by train is France, because the train network is laid out like a star with Paris at its JLU[LY0PZVM[LUX]P]RLY[V]HRLSHYLNKLV[V] through Paris, than to travel on a more direct WH[06UHWZVP]LUV[LPU-YHU]LQPNZWLLK railway lines were the most developed and ^PKLZWLHKTLYL[OHUPU-LYTHU];OLPN speed railway lines are almost non-existent in [OL<2VY PU:~P\aLYSHUK

\;OL<2^HZWYVHYIS[OL][V][U][Y]*OH tolerated foreigners the most, probably ILJHIZL[OLYLPZHTSTVZ[UVSHUN][HNLHHYYPLY Germany is quite paradoxical on this side, HZP[PZLY `LHZ`[VFUKWLWSSL `OV`HU speak English quite well (their “a little” means actually “quite good” in terms of English level) among all age categories even among more senior people, and all social-professional JH[LNYYPLZ0^HZHZ[VUPZOLK ^OLUVUHSL night, a homeless person in a train station started to ask me for money, and realizing that I do not understand German, spontaneously ^Z\p\OLKPU[V,UNSPZO~P\OUUHVYY [;OPZPZ TPHUS`VUS`[OL][HZLPUIPN]P[PLZOUTVYL rural areas it is the opposite, for example in 460PLT`OLY L0SP)L[P\PZL`Y `OHYK [VFUK people who can speak English, and those who can often are not happy to do so and THRL`[V]MLLSP[00H][UL],ILYMS[SHZTU]0 HMVYPNULY HZOLY LOUNLULY HS00HK[OL impression that Germans are very attached [V[OLYPHUN][HNL7LWVSLVM[LU`LPYS`ZHY at me because I could not speak it, and UHZ`[SP[[SLYTHYRZSPRL]]V]ZOV\SKSLHY UZWHL RLNYTHUHLYLHSS`MYL][ILU[4`NL among those remarks was the “you are now in Germany so you have to speak German” on my third day in Germany, with a very unfriendly tone (and in a perfect English) in a MVYLPNULY^ZV][LVMHSSWHJLZ0[L][LUIYVYN0]

French and Swiss could be perceived as the SLHZ[MVYLPNULYMYPUS`MVYPHL[LYU[YLHZ for the French are quite similar to the Germans, but with the added restriction [OH[OLPY,UNSPZPOZYLYHSST]O`V`YLZ in fairness, the “unfriendliness” is most WYYVUVU]KLPU7HYPZ[ZVUVHUVZVLNLZ[OL`Z outside of Paris, foreigners are much more welcomed, albeit with a bigger language HYYPLY,OLHZLM[OL`PZZPKPHLYLU[and mainly has been explained to me by my closest colleagues, who were Swiss, LYTU4VZ[VM[OLMVYLPNULYZHLY KTVPUN to Switzerland because of the high salaries and the quality of life, but at the same time, do not really try to adapt to their place in ^P\aLYSHUK;OPZPZHTHQVYYLHZVU`O`[OL` overall have bad opinions about French and LYTUZ>OLU[OVZLWLWSSL]VT[L[OL part of Switzerland speaking their language, [OL`H][HZPM[OL`LYLP[OLPYOVTL][V][Y` The locals do not like this because their TLU[HSP`PZL`KPHYL[KLZWP[LZOHYPN[OL SHUNHNL6ULULKZ][RLWLPUTPUK[OH[Switzerland is a Confederation rather than a JY][Y`LVWLSYHT][OTYLH][HIOLK[v their canton (region) than to their country and PZL[OLH][V][OH[K][HI][LZTVZ[VM[OLSH`Z This is why foreigners - at least those who do UV[THRLLHYY[Z[VHKHW][V][OLWSHLHLYL UV[WLYL]LP]K[OH[<LSSPU:[P\aLYSHUK

:\LYHSHZWL][ZVSMSPLP[OLKPHLYLU[\V][Y][P\L I lived in compared in this article based VUT`WLYZUVHSWLYJL[PVU0[HSSV`$KLTV[HRLH]HLIR]R\]V]WTYHLYLTP[KPHYL[SPML WLYPLUJLZOMLSSX][PLS][RHUKOHVV][W have had the opportunity to live and work in all [OVZLKPHLYLU[WSHLZHKUP[WWPZP][LS`HHL][LK[OLWLYZVUOH]LLJVLTHOSZVNYHM[LMS have to meet and exchanged with so many KPHYL[HUHKP][LYZLWLWSSL:~P\aLYSHUK`HZ by far my favorite place and I would highly YLVTTLKL;OL<2`HZ[ULHUKOHT XPL[LYL[H][OLK[V'TOVTL][V][Y`-YHUJL
While I am having a more nuanced experience in Germany, I hope to learn more interesting things about its culture and people during the remainder of my doctoral stay at the MPI für Kohlenforschung!

References

The year 2023 seems deceptively ordinary, like any year before COVID-19. Unrestricted travels and gatherings evoke a sense of normalcy, as if the traumatic experience of the past three years was erased. The only lingering reminder is when someone around us gets Corona positive, yet the anxiety that once accompanied it seems to have dissipated. However, the aftermath of the pandemic has left a lasting impact for many, leading to severe mental health challenges such as depression, anxiety, and isolation.

I had a conversation with a friend who has been dealing with depression since the start of the pandemic. As you read our conversation, we hope it resonates with those navigating similar situations, offering them a sense of understanding and connection.

What kinds of difficulties did you have during your study and how were you affected by the COVID-19 Pandemic? I remember that you told me you got depressed during this time.

We connected well and he started to get involved in my project. I was slowly getting back my motivation. Unfortunately, that's when the pandemic started.

Then how was your situation?

I could not concentrate at all while working from home because I need a productive work environment around me. In the first few months, the communication with the group was terrible since all of us were trying to figure out how to work online. That completely threw me back into the hole I had started to climb out of. At the same time, some of my colleagues were suddenly super productive, and I was feeling really bad about myself for not really knowing what I was doing. Because of the pandemic, I could not get the support I needed from my colleagues and supervisor in order to change this mood or feeling. I ended up sliding into a real depression but at the time I didn't realize that that's what it was. I felt really stuck and at some point a family member told me “Maybe you just need to take a break, some time off.” Somehow that sentence struck and when I had come to the conclusion that that's what I wanted to do, it felt like I could breathe again. I ended up taking 6 months of unpaid leave.

What did you do during this time?

I started therapy. That helped a lot. Then I made a plan of only doing things that are fun. In summers, I always take part in an opera performance. That year we had two productions and I participated in both of them. I also volunteered for an environmental organization who is maintaining biotopes in and around my city. I helped out with the group of volunteers to work in those biotopes from time to time. And then I just went snowboarding a lot in winter which is just my absolute favorite thing to do and what I...
I was taking a break during my PhD and had missed most during the pandemic. When I started this break I wasn’t sure if I would come back and if I wanted to continue with my PhD or if I just wanted to drop it entirely. But then while I was getting better and during therapy, I understood the roots of my problems. I decided that I wanted to continue. I started to understand that I needed to change my perspective on my work and myself in order to make it work and in order to be healthy. Do you think without COVID, you would have gone through the same thing or was it COVID that made it happen?

I don’t think it would have gotten as bad as that without COVID.

I also read this somewhere that actually people who already had major mental health issues before the pandemic, actually didn’t get that much worse during the pandemic. But the ones that had a little bit of issues, got a lot worse because of the pandemic. And that was definitely the case for me. So I think if the pandemic hadn’t happened, I would probably have been able to catch it earlier somehow and get back to a good state with the help of my social environment.

Do you feel COVID redirected your life? Did you change your perception of what is important and what is not that important?

In March of 2020, a letter concerning the origins of the SARS-CoV-2 virus was published in the Lancet, a prominent journal. The letter was signed by 27 well-established scientists who detailed their view on why they believed that the virus was most likely of natural origin. However, the article made quite unscientific claims of certainty surrounding its origins among a sea of rhetoric describing arguments to the contrary as “conjecture,” “misinformation,” and “conspiracy.” It also included some unusual claims of transparency from medical professionals in China, which was odd seeing as stories of silenced whistleblower doctors had already surfaced by this time.

Despite these flaws, the article had a big impact on the way the conversation around COVID origins continued, probably due to the presence of high profiled scientific experts on the letter. Mainstream media outlets as well as social media platforms quickly grabbed up the notion and squashed, discredited and censored opinions or evidence that appeared to contradict this notion.

The story left me wondering about how a seemingly simple scientific question - how a pathogenic virus started infecting humans - so quickly became resolved in the eyes of so many. How had scientists, so quickly, forgotten the most fundamental principle of science - to question everything? Or had we become too trusting of scientists to be unbiased in their stance?

There were undoubtedly multiple reasons for why this happened in early 2020. Herein, we’ll uncover a far less told story but one that is equally as important, if not more so. This is a story about how scientists let their biases get in the way of thorough scientific work and how it had the profound knock on effect that mislead not only other scientists but the whole scientific community as a whole. We will focus primarily on the character of Dr. Peter Daszak for the sake of brevity and clarity, however, he was just one of multiple scientists that deceived the scientific community in 2020.

When Scientists Fail Us

By Peter Schlichter
Peter Daszak had organised and drafted the letter in the Lancet. On the surface this was nothing unusual, Daszak works for the EHA (Eco Health Alliance), which allocates US department research grant money to promising scientific pursuits around the globe. He focused on pandemic protection research and had over his career worked on multiple projects researching the potential for bat coronavirus to spill over into human populations and cause the next pandemic, making him an ideal expert on the origin of SARSCoV-2. However, his deep involvement in bat coronavirus research, suggests a potentially significant conflict of interest. This was exemplified by being principal investigator on a 2014 EHA grant which collaborated with the Wuhan Institute of Virology (WIV) for the isolation and experimentation of novel SARS-related coronaviruses. It was, after all, the close proximity of this world-leading coronavirus institute (WIV) to the initial COVID cases that sparked controversy regarding the virus’s origin. In fact, FOI’d emails indicate an awareness for the conflict of interest, as emails to Dr. Baric and Dr. Wang, who had also collaborated with researchers at the WIV, mentioned that their names and link to their collaborations should be omitted from the letter to provide a more “independent voice.” Despite this, he not only went ahead and signed the letter but also left the conflict of interest section blank.

In the aftermath of the Lancet letter, new revelations about the WIV’s pandemic prevention research emerged, which may have surprised many in the scientific community had they not been able to directly engage with lead researchers at the WIV.

The WIV had sequenced many of the closest related viruses to SARS-CoV-2 from collections made back in 2013 that were sequenced in Wuhan between 2016-2018. Apart from sampling, the WIV had also been experimenting on recombinant bat coronavirus and SARS-like chimeric viruses which had been shown to grow and replicate in an improved capacity in humanised mouse lungs (Most of this research was not being conducted on bat coronavirus to SARS-like chimeric viruses which had been shown to grow and replicate in an improved capacity in humanised mouse lungs) (Most of this research was not being conducted on bat coronavirus to SARS-like chimeric viruses which had been shown to grow and replicate in an improved capacity in humanised mouse lungs). The WIV had sequenced many of the closest related viruses to SARS-CoV-2 from collections made back in 2013 that were sequenced in Wuhan between 2016-2018. Apart from sampling, the WIV had also been experimenting on recombinant bat coronavirus and SARS-like chimeric viruses which had been shown to grow and replicate in an improved capacity in humanised mouse lungs (Most of this research was not being conducted on bat coronavirus to SARS-like chimeric viruses which had been shown to grow and replicate in an improved capacity in humanised mouse lungs). The WIV had sequenced many of the closest related viruses to SARS-CoV-2 from collections made back in 2013 that were sequenced in Wuhan between 2016-2018. Apart from sampling, the WIV had also been experimenting on recombinant bat coronavirus and SARS-like chimeric viruses which had been shown to grow and replicate in an improved capacity in humanised mouse lungs (Most of this research was not being conducted on bat coronavirus to SARS-like chimeric viruses which had been shown to grow and replicate in an improved capacity in humanised mouse lungs). The WIV had sequenced many of the closest related viruses to SARS-CoV-2 from collections made back in 2013 that were sequenced in Wuhan between 2016-2018. Apart from sampling, the WIV had also been experimenting on recombinant bat coronavirus and SARS-like chimeric viruses which had been shown to grow and replicate in an improved capacity in humanised mouse lungs (Most of this research was not being conducted on bat coronavirus to SARS-like chimeric viruses which had been shown to grow and replicate in an improved capacity in humanised mouse lungs). The WIV had sequenced many of the closest related viruses to SARS-CoV-2 from collections made back in 2013 that were sequenced in Wuhan between 2016-2018. Apart from sampling, the WIV had also been experimenting on recombinant bat coronavirus and SARS-like chimeric viruses which had been shown to grow and replicate in an improved capacity in humanised mouse lungs (Most of this research was not being conducted on bat coronavirus to SARS-like chimeric viruses which had been shown to grow and replicate in an improved capacity in humanised mouse lungs).
made 18 months earlier [7]. The Lancet, in line with the changing public opinion of scientists, published a critical piece of this latest letter that detailed the poor scientific evaluation that was performed in maintaining the view that natural origin still held the most credible evidence [8].

Stakes were on the line, not just for Daszak but for numerous scientific experts. Many scientists were working on similar projects, including the sampling and experimenting with novel viruses collected from nature. Also in collaboration with the WIV. A potential lab leak threatened to remove the funding that these research groups depended on, a debate that had already been raging in the field for multiple years.

Despite this, science journalists were resistant to think critically and investigate the claims of these experts, at that time. Not self-profiteering themselves, they perpetuated the misleading narrative acting as educators rather than investigators, often believing they were performing a vital role in removing scientific misinformation. Their trust in the experts and their peers led them to take definitive stances, simply not supported by sufficient evidence. This contributed significantly to the controlling of public opinion for a period of a year.

There is a double edge sword of the definitiveness of the scientific method. While it does have the ability to, more conclusively than any other method, weed out fact from fiction it must also be performed by humans which are fallible to error. What is more, due to the constant striving into the unknown, only a few scientists will ever be on the bleeding edge of what we understand as a species, our so-called experts. So while these individuals are better suited than any other at relaying the results back to the public this affords them more responsibility than any human can possibly carry, if we are to universally trust these individuals.

While a moment of crisis may have made this a particularly poignant example, these are hardly rare. Books like Bad Science by Ben Goldacre highlight more examples where scientists have been misled by their own errors and biases. In the ‘war against saturated fat’ in the 1960-80s several multi million dollar government backed clinical trials were not released for...
Research at the WIV

Wuhan researchers had tested chimeric viruses in humanised mice and had shown improved growth. Research was only performed in BSL-3 labs (2nd highest biosafety facility).

mid-2018

Dr. OP > 0Y researcher publishes a paper that shows RaTG13 to be the closest related bat virus to SARS-CoV-2.

January 2020

French and Laotian scientists find a more closely related bat virus to SARS-CoV-2 in Western Laos.

September 2021

WIV publish results of bat sampling performed in Northern Laos between late-2021

September 2019

WIV takes pathogen database offline, including all the viruses they were experimenting on.

May 2020

WIV and EHA publish preprint with the data on viruses collected 2010-2015, including 97 novel viruses.: [9:SPRL]PY \ZLZ

References

What to Read Next
Book recommendations from the Offspring Team

Girl, Woman, Other
by Bernardine Evaristo (2019)

This Booker Prize co-winner follows the lives of 12 different women in the UK. The characters have an age range from teens to 90 years, and we learn over the complete novel that they are interconnected with/related to each other. The book explores difficult topics such as racism, sexuality and the socio-economic status of these women. It leads you to understand their situation without assuming a stereotype, and connect with them on a human level. Though this novel deals with such challenging issues, the author wrote it in a very easy language, often with some satirical essence to the characters making it a fun read.

Keywords: Fiction, Feminism, LGBT

Recommended by Manali Jeste

Braiding Sweetgrass: Indigenous Wisdom, Scientific Knowledge, and the Teachings of the Plants
By Robin Wall Kimmerer (2013)

Robin Wall Kimmerer is a plant ecologist of native American descent. Both her profession and her ancestry inform her work as an author and give her an interesting and rare perspective on the relationship between humans and the land and natural resources. "Braiding Sweetgrass" is her second book and it is full of stories from her own life as a scientist, as a teacher, as a mother, as a nature lover and as an indigenous woman trying to reconnect with her heritage.

The genre of this book is hard to pin-point. In parts an autobiography and in parts an essay, it meanders through Robin Wall Kimmerer's memories and thoughts, always with an underlying spiritual connection to nature. The book is sometimes uplifting, sometimes melancholic and always interesting and thought-provoking. Ultimately, it's a suggestion to learn from native American traditions and to reconsider our place in the ecosystems that surround us.

Keywords: non-fiction, botany, biographical, native american

Recommended by Constanze Reinken
The Girl with Seven Names
By Hyeonseo Lee (2015)

When you leave North Korea, you don’t leave a country but rather another galaxy. I know I’ll never be truly free of it wherever I go

The Girl with Seven Names

By Hyeonseo Lee (2015)

The Girl with Seven Names is an autobiography by Hyeonseo Lee, a North Korean defector who wrote about her escape from North Korea and her experiences in China. The book tells the story of her childhood in North Korea, her escape to China, and her experiences as a defector in South Korea. It also discusses the challenges faced by defectors in South Korea, including language and cultural differences, as well as discrimination.

The book highlights the dangers faced by North Koreans hiding in China, who are targeted by Chinese authorities and various criminal networks. It also explores the difficulties faced by defectors in South Korea, including the challenge of adapting to a new language and culture.

Overall, the book provides a unique perspective on the experiences of North Korean defectors and raises important questions about the human costs of political oppression.

Recommended by Davy Lin
The 5 AM Club
by Robin Sharma (2018)

If you have been looking for ways to improve the overall quality of your life, I highly recommend "The 5 AM Club", by Robin Sharma. This book explores the meaning of self-teaching and personal development using a fictional story structure. It encourages readers to embrace a morning routine, by following "The 5 AM Club principles" which will help them set a life lessons and strategies for positively changing your life. The central message of the book revolves around the establishment of a morning routine, which emphasizes the first hour of the day, called the "Victory Hour", as the most critical time of the day. During this hour, people should take part in a series of activities designed to improve their mental, emotional, physical well-being. The book constantly reminds us that concepts such as perseverance, resilience, and learning from our own mistakes are critical elements that can help transform our lives.

Recommended by Juan Alfonso Martinez Greene

Beautiful World, Where Are You
by Sally Rooney (2021)

As the title would suggest, this book is a feel-good novel written by Sally Rooney, who is already well-known for this genre. The book has two main characters: two best friends who are communicating mostly through emails, through which we also follow their lives. Their email exchange is almost like a conversation one would have with a friend, which makes the book relatable to the reader. They discuss their love lives, their philosophical opinions about the world they live in, and their friendship; often reminiscing about it. I would recommend this book if you would like to find positivity while being in the midst of some worrisome situation. It would definitely make you want to have such conversations with a friend!

Recommended by Manali Jeste
"There is nothing better than imagining other worlds,’ he said, ‘to forget the painful one we live in. At least so I thought then. I hadn’t yet realized that, imagining other worlds, you end up changing this one.’"

“Baudolino” is a captivating historical novel that takes readers back to medieval Europe in the 12th century, where a young and imaginative protagonist named Baudolino embarks on an extraordinary journey. Baudolino has two remarkable gifts that are at the heart of the book: a talent for learning languages quickly and a unique ability to invent stories that he knows people will want to believe in. As you delve into the story, you will find a fascinating blend of history, fantasy, and philosophy, set amidst theological and historical debates. Eco’s narrative explores the fine line between reality and imagination, offering deep insights into the power of storytelling and the human tendency to create myths. With its rich historical background, vivid and interesting characters, and philosophical discussions, “Baudolino” is a literary adventure that will both entertain and challenge readers, especially for those who enjoy historical novels.

Keywords: Historical fiction, Fantasy, Philosophy, Medieval

Recommended by M. Eray Akbas
Featured Episodes

#4-02 - Centenarians, Biological Clocks, and Reversing Ageing ft. Dr. Joris Deelen

In this episode, Bea and Asia discuss ethical issues when it comes to data collection, data protection laws, design of ethical HSNVY P[OTZHUK[OL]OHSSLNLZPKPN[H[S\LSSILPUNZPHL_W what GDPR (General Data Protection Regulation) is, the importance of interdisciplinarity work to achieve responsible computing, and O`LY`HLY]VSSLJ[PUNT]\OTVY LKH[OHU`LH]\HSS`ULLK[ZPHL also explains how companies collect our data, what transparency techniques there are, and what we can do to protect us from sharing KH[H`VO\RVU`PUN[ZPHHSZVNP]LZWLZYWLJ[P]LZHIV[OLY L_WLYPLJL`YRPUNH]VNSHLUK4P]YVZVM][VTWHYK[VH]HKLTPH \fjUKV\[TVYLPMUVYTH[PVUHV][+Y(ZPH)PLNJOLJR\[OLY `LIZP]L![O\WZ!]```\WTPZVWVYNIPLNH O\WZ\HZPHIPLNH[OLPV

#4-05 - Data Minimization, Privacy, and Responsible Computing ft. Dr. Asia Biega

In this episode, Bea and Asia discuss ethical issues when it comes to data collection, data protection laws, design of ethical HSNVY P[OTZHUK[OL]OHSSLNLZPKPN[H[S\LSSILPUNZPHL_W what GDPR (General Data Protection Regulation) is, the importance of interdisciplinarity work to achieve responsible computing, and O`LY`HLY]VSSLJ[PUNT]\OTVY LKH[OHU`LH]\HSS`ULLK[ZPHL also explains how companies collect our data, what transparency techniques there are, and what we can do to protect us from sharing KH[H`VO\RVU`PUN[ZPHHSZVNP]LZWLZYWLJ[P]LZHIV[OLY L_WLYPLJL`YRPUNH]VNSHLUK4P]YVZVM][VTWHYK[VH]HKLTPH \fjUKV\[TVYLPMUVYTH[PVUHV][+Y(ZPH)PLNJOLJR\[OLY `LIZP]L![O\WZ!]```\WTPZVWVYNIPLNH O\WZ\HZPHIPLNH[OLPV
The Offspring Magazine

Prof. Dr. Johannes Krause is a director at the Max Planck Institute for Evolutionary Anthropology. His research focuses on the analysis of ancient DNA to investigate pathogens from historic and prehistoric epidemics, human genetic history, and human evolution. He has contributed to deciphering Neanderthal genetics and the shared genetic heritage of Neanderthals and modern humans.

In this episode, Bea and Johannes talk about the timeline of human evolution starting from Homo erectus to Homo sapiens. Prof. Krause tells us how he and his colleagues discovered Denisovans and why Homo sapiens won the “species battle” throughout evolutionary history. Johannes also explains how evolution brought us two legs that are well suited for endurance running and discusses what makes humans human.

To find out more information about Prof. Dr. Johannes Krause, check out on his website https://www.eva.mpg.de/archaeogenetics/staff/johannes-krause/#c45293.

This episode is part of a series of interviews on RNA research conducted by Marcel during the fourth season of our podcast.

Dr. Jernej Ule is Centre Director at the UK Dementia Research Institute at King’s College London as well as group leader at the Francis Crick Institute London and at the University of Ljubljana. His research focuses on the study of RNA networks trying to understand the details of the interactions between RNA and proteins in the cell and how they are related to the cause of neurodegenerative diseases.

In the first part of this episode Jernej Ule tells us how his family has influenced his scientific career path. His mother, father and brother all have studied interactions and networks in sociology, philosophy, and mathematics. He explains that he has always understood the value of interactions and how he incorporates this in his research and has made the study of interactions of RNA a primary research focus.

In the second half of the first episode and in the second episode Marcel and Jernej dive deeper into his research, describing the technological method CLIP, that he has developed, to study RNA-protein interactions and how they relate to degenerative diseases.

To find out more information about Dr. Jernej Ule you can check out his website or Twitter/X: https://www.ulelab.info/

#4-19 - Human Evolution, Neanderthal, and Denisovans ft. Prof. Dr. Johannes Krause

In this episode, Bea and Johannes talk about the timeline of human evolution starting from Homo erectus to Homo sapiens. Prof. Krause tells us how he and his colleagues discovered Denisovans and why Homo sapiens won the “species battle” throughout evolutionary history.

In this episode, Bea and Johannes talk about the timeline of human evolution starting from Homo erectus to Homo sapiens. Prof. Krause tells us how he and his colleagues discovered Denisovans and why Homo sapiens won the “species battle” throughout evolutionary history.

To find out more information about Dr. Jernej Ule you can check out his website or Twitter/X: https://www.ulelab.info/
From the 9th to the 11th of October 2023, the PhDnet of the Max Planck Society convened at the Institute for Comparative Public Law and International Law in Heidelberg for the annual general meeting. This year’s meeting was focused on interaction and participation from the external representatives, in order to share different experiences and issues faced. Besides electing next year’s Steering Group, we were able to have a fruitful discussion on current and desired working conditions of all doctoral researchers. This resulted in the suggestion of establishing a new working group related to this topic, to be formalized and voted into the statutes before the end of this year.

Some of the issues discussed included: Thesis Advisory Committees (TACs) seem to be inhomogeneous across institutes when discussed during the GM, with some IMPRS programmes not upholding TACs. Many representatives voiced their desire for a standardization of TACs, and to ensure that there is a mandatory designated time during which students speak to the TAC without their advisor present.

Emerging from the Equal Opportunity Working Group, Safer Spaces is a peer-to-peer trained support network that aims to provide a space for students to express concerns and thoughts about their graduate experience without fear. Power abuse continues to be a common topic of conversation. Compulsory leadership training was discussed as a way to involve problematic scientific leaders that may inadvertently inflict power abuse, as well as the possibility of annual evaluation reports of permanent staff members that can abide by privacy laws.
Concerns were voiced over a need for onboard packages that are (partially) MPG-standardized for first-year PhD students to receive from general administration upon arriving at their institutes. Onboarding packages would ideally contain concise information (in English) on determination of salaries, worker rights, information about ways to identify and report power abuse and workplace harassment, local points of contact for internal issues, information on mental health support, and information about PhDnet and helpful working groups as additional points of contact.

We have to thank this year’s General Meeting group, who did an amazing job organizing and managing the General Meeting. Our further thanks goes to Prof. Dr. Patrick Cramer (President, MPS), Dr. Simone Schwanitz (General Secretary, MPS), Ilka Schießler-Gäbler (Programs & Networks, HR Development & Opportunities Department, MPS), Sabine Ziegler (Programs & Networks, Alumni, PhDnet & Career Steps Network, MPS), Kerstin Düben-Gee (Head of HR Department, MPS) and Anne Grewlich-Gercke (Industry Tracks, Human Resources Department, MPS).

Last but not least our thanks go out to all external PhD representatives and working group members – PhDnet would just not be possible without you!

For a detailed summary of all the events and discussions that have taken place at the General Meeting, check out our website www.phdnet.mpg.de. Please also feel free to reach out to your external representative who attended the meeting, if you have specific questions. If you have missed the General Meeting this year, make sure to watch out for announcements of the General Meeting 2024.
Steering Group Overview 2023

By PhDnet Steering Group 2023

Issues from our Agenda

1. Mandatory TACS

TAC guidelines with the required processes have been established after multiple rounds of corrections between the 2022 Steering Group, Working Groups and the General (KTPUPZ)[Y H(PVU;OL) OH] LHSZVILLU WYLZL[KLpu[OL];PLu[Pf]*VU] P5^O Z]LX\[LU[PU]VY VWYH[PVUV]M[OLMLKLH]\n
The President is currently looking into the possibility of these guidelines being THUK[V Y`H]Z[OL`H]L]YYLU[S`VUS`N]PKPUN. We have shared these TAC guidelines with the external representatives and encouraged those who want to, to discuss directly with their supervisors about the possibility of PTWSLTLU[PUN[OLT]

2. More Inclusive Workplace

MPSOHZVLVM[OLT]VZ[KP]LYLZJPLU[Pf] communities in the world and our goal is to THRL[HTTYLPUSZ]PYZWJLMDYLY`VUL. We propose a bottom up and a top down HWVVYVHJO;OLZLHYLYLZWL[J][P]LS\[OL implementation of the Safer Spaces Initiative and training on intercultural communication HUKPJuszP]ULZZMVY[OL47:SLHKLYZOPW

The GA is currently putting together the curriculum for Safer Spaces and we hope that 2024 will see agents from each institute ILPUNYL]YP[KHUKYPHULK>L)VOWL[OH] the implementation of this initiative will mean doctoral researchers having easier access and understanding of the various MPI channels ^OLUHUPZZ\LYHZLZ

3. Onboarding

WeWYWVWZLK[OH][OLQVIVHL]Y[VUL^+9Z]V contain clear information regarding contract details, German courses, immigration support, HTUVNZ[V]OLZY<WWVQVPUP]NOLPUZ[P][L we propose that the PhDnet and other support structures and work groups should be introduced to the DRs by Human Resources VYHTLTYVM[OL0U[L]YPVUHS6]LPM[OL PUZ][P][LOHZVUL

4. TVöD contracts and binding contract guidelines

We were interested in having written binding guidelines regarding contract duration and minimum contract extension, ensuring that +1 extension will be granted to every DR who has not yet completed the thesis, and assuming that the contract is automatically canceled \WWV[OLZPZZ]TPZZPVU\-Y[OLTYVL\L] proposed that we get TVöD contracts instead VMZWVVYJLV[HY]Z

No consensus was reached on the binding N\PKLSPULZLYNHYKPUNL[LUZPVUZV`L])LY `LOVWL[JVU]PU[LVWZOVU]OPZPZZ\L Regarding the TVöD contracts, the President endeavoured to look into the pros and cons of TVöD contracts versus support contracts and THRLHKLJZPVUVU[OPZIHZPZ

5. Tracking of Working Hours

We believe that the tracking of working hours shall neither hamper nor delay progression of ^VYRPUBL[OLSHIKKP[PVUHS`LHK][V][L][OH[DRs should be compensated for overtime - if U[VfUH]PHSS`^P[OL_[YHOVSPK\HXHZP[PZ KLZ]YPILKP[OLVJ]PHSYLN\SHPVUZ There is currently no update on this issue as the GA is still in talks about how to proceed with this and whether scientists are an L_JLW[PVU][OL[HY]RPUNVM^VYRPUNO]YZ
6. Researchers on Stipends

We proposed that MPS offers top-up contracts to stipend holders whose stipends are lower than the regular net salary of MPS DRs. Alternatively, MPS could negotiate with the stipend providers to increase their stipend or remove the exclusivity clauses. Finally, stipend holders are also being excluded from the inflation benefits although they are most affected by inflation and we would be sincerely grateful if they are also included in the negotiations.

The President suggested that he would write letters to the top ten stipend providers in order to enter discussions with them on increasing the stipend amounts. There was also suggestion of looking into the possibilities of top-up contracts, to the extent they are allowed within the stipend framework.

Ad Hoc Issues

The inflation payment topic was unexpected and yet one that we immediately felt passionate about given the direct impact it would have on all of us. We were in constant communication with the GA throughout the discussions but the biggest issue was having enough information to be able to update the doctoral researchers with. Most times the only update we had was that there was no update, and we were not always sure if this was worth sharing. We pushed as hard as we could to ensure that all doctoral researchers could receive the inflation payment. We are grateful to the GA for including us in the discussions and helping push this issue forward.

The MPS statement on the conflict in Israel/Palestine was another unexpected moment for us to assist in making all doctoral researchers feel heard. Although the letter was not an initiative from PhDnet we were involved as a distribution platform. This along with the contents of the letter was done in close communication and with approval of the general administration of the MPS in Munich. By sending this letter we specifically tried to stay true to our mandate as written in the PhDnet statutes - to identify and voice the concerns of PhD researchers as we have been doing before in several political and non-political issues.

Lessons Learnt

Our biggest lesson from both ad hoc issues is that we still learning how to communicate as a team between the six of us but we were also facing the challenge of how to adequately try our best to be open to constructive attempts to communicate with the PhD community. We tried our best to be open to constructive feedback, learn as we went. We know now that more communication is better than less and providing a minimal update is better than none at all. We learnt that when dealing with polarising issues, it is important to have surveys that allow everyone to participate.

We are grateful for all the emails that you took the time to send. We tried to always reply respectfully and within a reasonable time frame, given that we are all also trying to work on our PhDs and are volunteering for the SG in whatever time we have available.

We grew tremendously as a steering group. Learning more on what it means to work as a team and really coming together when things are tough.
Steering Group of the Max Planck PhDnet 2024
(As elected at the General Meeting, on October 11th, 2023, in Heidelberg)

Spokesperson:
Elizaveta Bobkova
MPI for Terrestrial Microbiology, Marburg
elizaveta.bobkova@mpi-marburg.mpg.de

Deputy Spokesperson:
Anne-Lena Moor
MPI of Molecular Cell Biology and Genetics, Dresden
moor@mpi-cbg.de

General Secretary:
Isabela de Oliveira Martins
MPI for Solar System Research, Göttingen
oliveira@mps.mpg.de

BM Section Representative:
Noah Valentin Widdershooven
MPI for Metabolism Research, Köln
widdershooven@mpi-cbg.de

CPT Section Representative:
Ellen Rumley
MPI for Intelligent Systems, Stuttgart
rumley@is.mpg.de

HS Section Representative:
Philipp Sauter
MPI for Comparative Public Law and International Law, Heidelberg
sauterp@mpil.de
Equal Opportunity Group

Doing a PhD is hard enough; we in the Equal Opportunity Work Group (EOWG) believe systemic barriers disproportionately affecting specific groups should not make it more difficult. The EOWG’s mission is to promote equal working conditions regardless of sex, gender, sexuality, ethnicity, nationality, religion, (dis)ability, or other aspects of diversity. Within our group, we help PhD students by answering emails to our mailing list, distribute helpful and relevant materials and events about diversity and inclusion in academia, and communicate with the central administration and other networks to work towards long-term equal working conditions.

An ongoing project since 2021 has been the development of a local peer support program, Safer Spaces. Following survey results from 2020-2021, we identified a need for a local (institute-specific) contact person for which one can seek moral and practical support when one feels discriminated against (e.g. experiencing microaggressions, disagreeing with non-inclusive policies). The idea is to have MPI members trained in diversity topics and active listening skills designated as “Safer Spaces Agents” at their respective institutes.

Additionally, in 2023, we represented the PhDnet at the annual Gender Equality Officers meeting on April 20th at Harnack House. We also promoted the celebration of German National Diversity Day on 23rd of May 2023, and hosted a panel discussion on ethnic diversity in Germany, with invited panelists Hristio Boytchev (Freelance Journalist) and Richard van Noorden (Features editor, Nature). In the next year, we will decide on a new group co-ordinator. We will also continue developing the final structure of the Safer Spaces Initiative and we foresee the launch as early as Spring 2024, when we will begin to recruit the first Safer Spaces Agents for training.

Feel free to write to us anytime with any concerns or comments about equal opportunity. You can join our mailing list to stay connected or join our growing list of active members to contribute to specific sub-projects based on your interests and skill sets. We look forward to hearing from you at equal.opportunity@phdnet.mpg.de!

General Meeting Group

Do you like to organize meetings, interact with Doctoral Researchers across different disciplines, and work in an awesome team? The General Meeting Group organizes our yearly General Meeting, where we bring together the Steering Group, General Administration, and external speakers for a three day meeting with the DRs from the Max Planck Society. One of the main tasks at the General Meeting is to hold elections for the new SG every year and recruit new Working Group members.

There was also an opportunity for the external representatives to discuss with the GA, any issues that they/in their institute might be facing. So if you like being part of a team to bring the DRs together to network and create a platform for a fruitful General Meeting working group!
Offspring Magazine and Podcast Group

The 6HZWYPUN4HNHaPULHUK7VKHZ team serves as a platform for Max Planck 9LZLHYJOLYZ[VLYLZ[OLPYZ][PLU][PJ] endeavors, share personal experiences, and foster a supportive community through [OLTLPJ]TZXVMOY[UHSPZTHUKWVK]HZ[PLU]L[H][OL6HZWYPUNLHTKLSLPUVHVSS[OPUNNZ][PLU][PJ]HUK7O+YLHS[LFKHPTPUN[V encourage an ongoing dialogue among Max 75HUJR+9Z6YJVU[YPJ][PVUZPUSLKH annual magazine, online articles, and regular WVKHZ[YLALH[LZLZ6YTPPZPVPUPZ[VHTWSPM]P] voices of PhDs, shedding light on their Max 75HU[JYLZLHYJOLYYQV"ULTHRPUN[OLWYV[TVLY]L[YHUSWHYLH[HLK]LZCPPSL6]YPKLZLYL content spans book reviews, opinion pieces on general interest topics, and issues directly PTWH][PUN[OLSP]LZVM+ZOM`V\KSPRL[V contribute an article, suggest a topic, or share PKLHZMLSSLMLYLL[YLHJOV[\\"[V\ZH[6HZWYPUNTHNHaPULWOKUL[TWNKL

Open Science Group

The PhDnet Open Science workgroup focuses on the accessibility and transparency VMZ[JPLUJZLHYJOLYZ we understand the importance of open KPPZLTPUN[PVUVMZ][PLU][PJ]RUV`SLKNIOLYLMLMYLYLZLRRVOPNOSPNO[OLILULF]Z of open science throughout the Max Plancknbsp:V\P[`

We asked doctoral researchers from all Max Planck Institutes about their knowledge and PU[LYZ[PWUZLNSP][PLUJL6YZZY]L`ZOV`LK that early career researchers are keen on learning more about it, but that they lack the information on how to make their work WLU6USVMOLKVJYHSVZLHYJOLYZ were able to publish their articles in open HJ[LOZQVYUHSZOPSLULHYSZHPK[OLHLYLWSHUUPN[KVYPUP[OLML\YLYVSSV`PUN the survey, we presented a discussion paper to the general administration where we emphasized the lack of a systematic implementation of open science practices throughout the MPS as well as a list of recommendations on how to better support young researchers trying to make their JUKPUNZH[JLZCPPSL We have created a “quick guide” to open BPLUJLWISPZOPUPOZWLJPHKPLMVY Max Planck researchers, and we are currently working on a video series which will inspire early career researchers to put open science in WYHJ[PLWNL[OLY with MPDL, we organize yearly Open Science Ambassador Programme conferences where we provide the opportunity to discuss Open Science practices for scientists from all career stages with the aim to integrate these principles as a standard process in the YLZLHYJOCYR`H[OL47:HUCLK`VUK

If you are interested in pushing the boundaries of access to knowledge, get in touch with us! We are always happy to welcome new TLTILY3Z[OLNYYW@V\HUYLHJO\ZH[VWUZLNSP][PLUJLWOKUL[TWNKL
Secretary Group

As you might know, the Max Planck PhDnet was founded in 2003 to represent all DRs amongst the Max Planck Society and to advocate for their interests. Without proper elections of External Representatives for each institute and the Steering Group of the PhDnet, the foundation for all the good work of the past and future generations will be at risk. These essential elections are organized with the assistance of the Secretary Group of the PhDnet institute with the election process, keep the communication amongst institutes and the Steering Group flowing and, most importantly, ensure that the PhDnet is legitimized by all of you.

Speaking of the next few years: It would be great if more volunteers would come forward to support the General Secretary elect with the very important task of organizing the upcoming elections. This work is not only very vital for the existence of the PhDnet, but also it is very satisfying, the organization is well-structured and you get to know a lot of great people! You can reach us at secretary.group@phdnet.mpg.de.

Social Media Group

Check out our brand new working group: Social Media! Our aim is to keep the PhDnet Doctoral Researchers, alumni and the general public informed about our latest news, events and updates. Check out our coverage of the General Meeting 2022 and other exciting news on our twitter and instagram pages (@maxplanckphdnet). Our goal for next year is to increase our social media presence on all platforms, promote more of our doctoral researchers’ publications and give the general public an insight into what the life of a PhD is like.

Do you have a passion for social media? Do you spend endless hours looking at PhD memes? Or just want to learn how to manage an account? Join us! No experience needed.
Webgroup

Have you always wanted to know how to make a website? Or do you have hidden web design skills and want to bring them to use? We are the workgroup for you! The Webgroup works tirelessly in the background of the PhDnet website, where you can find information about all of our working groups, our events, and latest PhDnet news. We also curate the different mailing lists, and work in collaboration with all the other workgroups.

If you have prior web design knowledge, that's great! Join us. If not, but you are curious to learn together and develop your skills? Fantastic! Join us. We have no requirement except for an open mind and enthusiasm. Feel free to reach out to us at webgroup@phdnet.mpg.de.

Survey Group

The PhDnet conducts an annual survey with current doctoral researchers to assess the working environment in the Max Planck Society. It covers topics such as demographics, working conditions, support structures, power abuse, mental health and more. The collected data is crucial evidence used to support our argument for improvements.

In the previous years, we were able to gain insights into pay gaps, employment types and durations, discriminations, mental health, integration and career development. Our work gives directions toward the areas where improvements are possible and set guidelines for the measures negotiated by the Steering Group. We work in close relation with other workgroups which are specifically focusing on one or multiple of these problems.

Our work consists of designing the questions, sending out the survey, analyzing the gathered data and writing the final report. During analysis, we are free to choose the topics we want to study and deepen. We always welcome new members if you would like to join us to investigate the current work surroundings of DRs in the Max Planck Society and contribute to their improvement. Check out last year’s report on the PhDnet website!
What we do

Writing

Podcasts

Filming

Interviews

Filming

Editing

Text

Layout & Design

Interested?
Join us!

2024

This magazine was brought to you by
The Offspring Magazine
Workgroup of the Max Planck PhDnet.